

EM9380 开发评估底板手册

感谢您购买英创信息技术有限公司的产品: EM9380 嵌入式主板。

传统的嵌入式工控主板通常是由单一CPU与Windows CE或Linux操作系统结合而成,由于操作系统任务调度机制所限,很难满足高速实时控制的应用需求。EM9380则是针对实时控制的应用特点,在英创工控主板技术基础上,巧妙融入一片高性能 MCU 专门实现实时控制任务,为客户提供了一种高效低成本的实时控制应用的解决方案。EM9380是一款双CPU配置的工控主板产品,其中主CPU为 454MHz 主频的 ARM9(FreeScale 的 iMX283),运行Windows CE6.0(R3),实时控制 CPU采用 64MHz 主频的 Cortex-M3(Atmel 的SAM3S2A),CPU之间通过高速 USB相连接。从应用角度看,实时控制 CPU是作为系统的一个专用协处理器,接收主CPU的指令,操作所属的硬件资源(数字 IO、PWM、AD等),完成实时控制算法。在具体的应用程序设计中,实时控制协处理器对应一组特定的驱动程序 API 函数,应用程序通过调用这些 API 就可启动协处理器对应一组特定的驱动程序 API 函数,应用程序通过调用这些 API 就可启动协处理器完成常规的数据采集控制任务。用户可直接使用 Microsoft 提供的著名软件开发工具包 VS2005,在 Windows 开发主机上,直接开发运行于 EM9380的应用程序。在硬件方面,包括 EM9380 在内的所有英创嵌入式主板产品,均采用背插形式,通过主板的双排坚固插针与客户的应用底板连接在一起,从而构成完整的智能设备,其连接方式如下图所示。

客户的应用底板的基本功能包括向 EM9380 供电、引出所需的各个通讯接口、扩展专用的应用电路单元等等。应用底板的尺寸以及接口所处位置则与整机产品的接口密切相关。 另外整机的电磁兼容性也会在应用底板上有相应体现。

当客户第一次购买 EM9380 产品时,由于还没有自己的应用底板,自然就需要一个能

<u>www.emtronix.com</u> 1 028-86180660

对 EM9380 的各项功能进行快速评估的底板,而 EM9380 开发评估开发底板就是专门供客户在其产品初期,进行功能评估测试以及应用程序的开发。本手册主要介绍 EM9380 评估底板的使用,包括各个接口的信号定义,扩展的驱动电路说明等内容。

EM9380 开发评估底板将包括在开发套件中出售,套件中的资料还包括了评估底板的电路原理图(PDF格式)和 PCB 文件(Protel格式)。用户可在这些资料的基础上,根据自己的需求进行删减和增加,快速完成自己的应用底板的设计。此外,英创公司针对模块的使用编写有《EM9380 工控主板数据手册》。这两个手册都包含在英创为用户提供的产品开发光盘里面,用户也可以登录英创公司的网站下载相关资料的最新版本。

用户还可以访问英创公司网站或直接与英创公司联系以获得 EM9380 的其他相关资料。

英创信息技术有限公司联系方式如下:

地址:成都市高新区高朋大道 5 号博士创业园 B 座 404# 邮编: 610041

联系电话: 028-86180660 传真: 028-85141028

网址: <u>www.emtronix.com</u> 电子邮件: support@emtronix.com

注意:英创将会不断的完善本手册的相关技术内容,请客户适时从公司网站下载最新版本的数据手册, 恕不另行通知。

目 录

1、	评估	底板概述 4
	1. 1	EM9380 评估底板主要接口插座 5
	1.2	EM9380 评估底板内部插座及其他 6
	1.3	机械尺寸及插座位置示意图7
2、	评估	底板接口插座的信号定义8
	2. 1	以太网接口8
	2. 2	RS232C 电平的异步串口 8
	2.3	TTL 电平的异步串行接口插座 9
	2.4	RS485 接口 10
	2.5	USB 主控接口 (HOST) 11
	2.6	USB OTG 接口11
	2.7	SPI 与 I2C 接口 12
	2.8	数字 I0 接口 12
	2.9	MICRO SD 卡插座
	2. 10	电源输入插座14
3′	EM9	380 与评估底板的连接插座15
4、	评估	底板内部插座及其它17
	4. 1	跳线器
	4.2	指示灯
5、	其它	说明 18
6、	版本	历史 19

1、评估底板概述

与英创公司大多数嵌入式主板产品一样,外形结构上 EM9380 是作为一片"大芯片",通过模块的 2 个 36 芯双排 IDC 插针,插在客户的应用底板上进行工作的。当客户第一次购买 EM9380 嵌入式主板时,由于还没有开发自己的应用底板,就需要一块与 EM9380 相配合的底板,以便于对 EM9380 的各项功能进行评估以及开发相关的应用程序, EM9380 开发评估底板就是为这一目的而设计的。

EM9380 与评估底板之间是靠 EM9380 的两个双排 IDC36 插针连接的。开发评估底板除了承载 EM9380 并为其供电以外,还将其所有硬件接口引出并转换成标准接口形式提供给用户。此外底板上扩展了 3 路 RS485 驱动单元、EM9380 实时时钟的后备电池等电路。 EM9380 底板上还有一个板内垫高 USB A 型插座,很适合用来连接 USB WiFI、USB 3G 等模块,手册首页照片就是在这个插座上连接了一个 USB WiFi 模块。为了方便用户开发自己的专用应用底板,在 EM9380 的评估套件的资料中,还包括了评估底板的电路原理图(PDF格式)和 PCB 图(Protel 格式),用户可以直接对这些资料进行增加或者删减,设计出适合自己的应用底板。

为了尽可能提高 EM9380 开发评估底板的使用性,标准 EM9380 板上有一个 USB 虚拟串口(1)和 9 个物理串口。在 9 个物理串口中,8 个串口是用户可使用的串口,一个串口是系统调试口。各串口编号及接口规范如下表所示:

CE 串口	Linux	RS232	RS485	TTL	简要说明
COM1	-	-	-	-	USB 虚拟串口,支持 ActiveSync
COM2	ttyS1	-	-	√	支持 RTS/CTS 硬件握手
СОМЗ	ttyS2	V	-	-	RS232 电平,TTL 电平可选
COM4	ttyS3	-	-	√	
COM5	ttyS4	-	-	√	
COM6	ttyS5	-	-	√	与 GPIO10 - GPIO11 复用管脚
COM7	ttyS6	-	V	-	
COM8	ttyS7	-	$\sqrt{}$	-	
СОМ9	ttyS8	-	√	-	
DBGCOM	console	V	-	-	调试串口,系统占用

<u>www.emtronix.com</u> 4 028-86180660

USB 虚拟串口(1):使用 EM9380 的 USB-OTG 接口虚拟一个串口,以实现 EM9380 通过 USB-OTB 接口与 PC 机 USB-HOST 口连接后,进行高速数据通讯。

1.1 EM9380 评估底板主要接口插座

为了方便用户对 EM9380 的各个功能进行快速评估,按不同功能在其评估底板上共设置了 17 个接口插座,如下表所示:

插座编号	接插座类型	主要功能简述
CN1	6 芯 HT508 插座	COM4、COM5、COM6
ONIO		RS485 接口,自动方向控制
CN2	RJ45 网络接口	网络接口
CN3	双层 USB A 型插座	USB 主控接口
CN4	USB mini-AB 型插座	USB OTG 接口
CN5	双层 DB9 公头	COM3,系统调试串口 COM_DBG,
0110	/X/Z DD3	3 线 RS232C 电平串口
CN6	USB A 型加高插座	USB 主控接口
CN7	3 芯 SIP 插座	+5V 电源输入接口
CN8	IDC20	通用数字 IO 接口,GPIO16~GPIO31
CN9	IDC10	COM2 口,5 线 TTL 电平串口
CN10	IDC10	COM5 口,3 线 TTL 电平串口
CN11	IDC20	通用数字 IO 接口,GPIO0~GPIO15
CN12	IDC10	COM4 口,3 线 TTL 电平串口
CN13	IDC10	COM6 口,3 线 TTL 电平串口
CN14	IDC10	SPI,I ² C 接口
CN15	Micro SD 卡座	支持大容量 SD 卡(32G)

注意:

- 1. 评估底板上所有接插座的方形焊盘均为 1#管脚。
- 2. IDC 插座均为 2.54mm 间距带外套插座

1.2 EM9380 评估底板内部插座及其他

EM9380 评估底板内部还包括了承载 EM9380 主板模块的两个 36 芯双排 IDC 插座、

4个跳线器以及1个硬件复位按钮,如下表所示。。

接插座编号	接插座类型	主要功能简述
EM9380_CN1	36 芯 IDC 插座	连接 EM9380 的 CN1
EM9380_CN2	36 芯 IDC 插座	连接 EM9380 的 CN2
JP1	2芯 SIP	工作模式选择(调试/运行)
JP2、JP3、JP4	2 芯 SIP	分别为 COM7、COM8、COM9 口 RS485 匹配电阻选择
S1	复位按钮	系统复位

● EM9380 开发评估底板上的 RS485 驱动,采用独特的 TXD 加延时的自动方向控制,可直接利用串口驱动程序实现 RS485 的通讯。一般情况下不需要加匹配电阻。

<u>www.emtronix.com</u> 6 028-86180660

1.3 机械尺寸及插座位置示意图

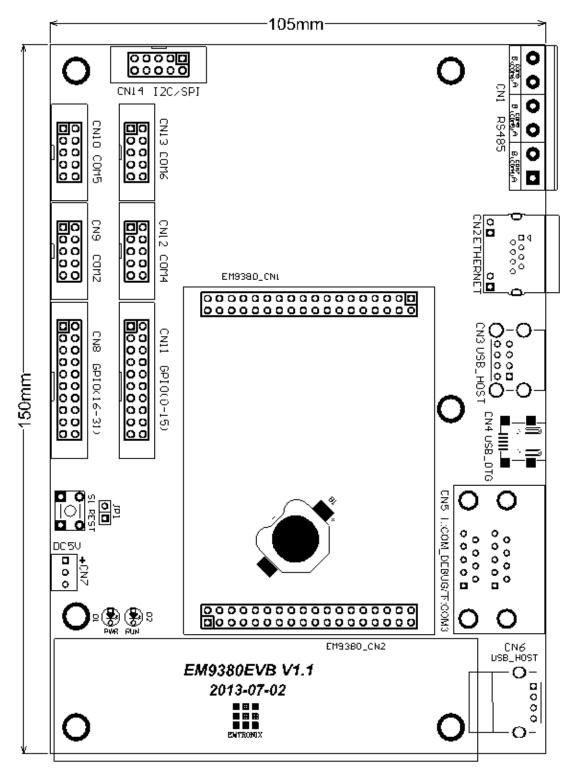


图 1: EM9380EVB 顶视图

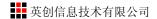
2、评估底板接口插座的信号定义

EM9380 的评估底板上的所有插座,如无特殊说明,1#管脚为方形焊盘,而其他管脚为圆形焊盘,借助评估底板焊接面的丝网方框标志,可很容易识别 1#管脚位置。所有信号名称,若带#后缀,表示该信号为低电平有效的信号。

评估底板上的各个接口基本上都是从 EM9380 主板直接引出,各接口的详细电气特性,请参考《EM9380 工控主板数据手册》

特别注意:评估底板的所有 TTL 电平串口和 GPIO 接口只能接受 3.3V 电平信号输入,接入超过 3.3V 电平的信号,可能影响系统启动甚至造成硬件损坏。

2.1 以太网接口


评估底板上的 CN2 是 EM9380 的以太网接口,为标准 RJ45 插座。为了方便客户的电磁兼容性设计,评估底板上包括了网络接口的隔离变压器,EM9380 主板上不带网络隔离变压器。网口 RJ45 插座上自带以太网指示灯,其中绿灯为 LINK 灯; 黄灯为 100M 灯。<u>以太网接口除作通常的网络相关应用外,还可用于 EM9380 的调试、维护</u>。这两个功能可同时运行,互不影响。各管脚信号定义如下:

PIN#	信号名称	信号简要描述			
1	TPTX+	隔离差分输出+			
2	TPTX-	隔离差分输出-			
3	TPRX+	隔离差分输入+			
4		通过 750bma 中阳控列 D IA5 从丰地			
5		· 通过 75Ohms 电阻接到 RJ45 外壳地			
6	TPRX-	隔离差分输入-			
7		通过 75Ohms 电阻接到 RJ45 外壳地			
8					

2.2 RS232C 电平的异步串口

EM9380 评估底板的 CN5 是双层 DB9 公头插座,用于引出 RS232C 电平的 COM3 口和系统调试串口。

CN5 插座的下层是 COM3 口,信号定义如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
	1	6	
COM3_RX,串行输入	2	7	
COM3_TX,串行输出	3	8	
	4	9	
GND ,公共地	5		

● 串口 COM3 也可根据客户需求,在出厂时配置成 TTL 电平信号。

CN5 插座的上层是系统调试串口,信号定义如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
	1	6	
DBGCOM_RX,串行输入;	2	7	
DBGCOM _TX,串行输出	3	8	
	4	9	
GND ,公共地	5		

在大多数正常的应用程序开发中,客户都不需要关心调试串口的使用。在一些特殊情况下,客户可能需要了解 EM9380 的启动过程,这时就需要使用调试串口,具体的使用方法是与 PC 的串口相连,通过超级终端(115200 8-N-1)就可接收到 EM9380 的启动信息。

2.3 TTL 电平的异步串行接口插座

在 EM9380 的评估底板上,CN9 是 5 线制的 TTL 电平通用串口 COM2,管脚的具体配置如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
	1	2	
RXD2, COM2 口串行输入	3	4	RTS2#,复用 GPIO17
TXD2, COM2 口串行输出	5	6	CTS2#,复用 GPIO06
	7	8	
GND, 公共地	9	10	VCC,+5V 电源输出

<u>www.emtronix.com</u> 9 028-86180660

COM2 所有信号均为 3.3V 的 TTL 电平。在实际应用中,COM2 通常用于连接 GPRS、3G 等无线通讯模块。对大多数应用,采用 3 线制(RXD/TXD/GND)即可满足要求,一些特别的应用可能需要硬件流控支持,这时可加入 RTS2#和 CTS2#这组握手信号。

CN12、CN10、CN13 分别是 COM4、COM5、COM6 口的 TTL 电平信号接口,均为 3 线制串口,它们的引脚定义如下所示:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
	1	2	
RXD, COM 口串行输入	3	4	
TXD, COM 口串行输出	5	6	
	7	8	
GND, 公共地	9	10	VCC, +5V 电源输出

COM5 串口的 TXD 引脚除了作为串行数据输出信号外,还有一项特殊的功能,当系统上电时,TXD5 为上拉输入状态,此时若通过一个电阻将 TXD5 拉低,系统检测到 TXD5 为低电平,系统将自动进入调试模式,否则系统进入运行模式。(调试模式与运行模式请参考《EM9380 工控主板使用必读》)

2.4 RS485接口

在标准配置的 EM9380 评估底板上扩展了 3 路 RS485 驱动电路单元, COM7、COM8、COM9, 它们通过 6 芯 HT508 插座 CN1 引出。驱动电路单元均支持光电隔离功能。在缺省配置中,均带光电隔离。CN1 插座的信号定义如下:

PIN#	信号名称	信号简要描述
1	А	COM7 口 RS485 差分信号+
2	В	COM7 口 RS485 差分信号-
3	А	COM8 口 RS485 差分信号+
4	В	COM8 口 RS485 差分信号-
5	Α	COM9 口 RS485 差分信号+
6	В	COM9 口 RS485 差分信号-

RS485 差分信号线的 120Ω 匹配电阻,通常不加;

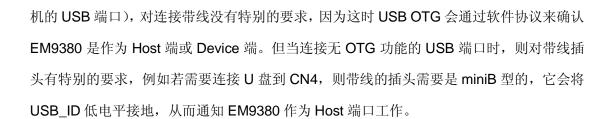
2.5 USB 主控接口(HOST)

EM9380 支持 3 路 USB 主控口,分别引到底板的 CN3 和 CN6,可支持 U 盘的文件操作; USB 鼠标及 USB 键盘。在调试状态下,用户通过 U 盘来加载最基本的调试运行配置文件 userinfo.txt。

CN3 是标准双层 USB A 型插座,插座上下两个 USB 口的管脚定义一样,如下表:

PIN#	信号名称	信号简要描述
1	+5V	USB 供电输出,最大电流 500mA
2	USB_HD-	USB 的差分信号-
3	USB_HD+	USB 的差分信号+
4	GND	电源地,即公共地。

CN6 是面向板内的 USB A 型插座,很适合用来连接 USB WiFI、USB 3G 等模块,手册首页照片就是在这个插座上连接了一个 USB WiFi 模块。考虑到插入的 USB 设备有一定厚度,所以 CN6 采用的是 USB A 型加高插座(加高 3mm),大多数常规 USB 设备都能正常插入。CN6 插座信号定义与 CN3 一样。


2.6 USB OTG 接口

CN4 为 USB OTG 接口,支持微软的 ActiveSync 通讯模式,用户可利用该模式,通过 点对点的 USB 连接,就可在客户的开发主机上方便的维护 EM9380 的文件内容,当然也可以 ActiveSync 为调试通道,调试应用程序。

CN4 采用的是标准 USB OTG miniAB 型插座,插座上的信号定义如下:

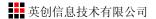
PIN#	信号名称	信号简要描述
1	USB 电源端	作为主控口时,用于向外部供电
2	USB_DD-	USB 的差分信号-
3	USB_DD+	USB 的差分信号+
4	USB_ID	USB 连接类型检测。
5	GND	电源地,即公共地。

EM9380 评估底板的 USB OTG 接口与具有 OTG 功能的其他 USB 端口连接时(如 PC

2.7 SPI与I2C接口

CN14是EM9380的硬件SPI接口和I2C总线接口,同时还包括两路中断输入信号,CN14的信号定义如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
I2C_SDA,复用 GPIO22	1	2	I2C_SCL,复用 GPIO23
IRQ1 中断信号,复用 GPIO24	3	4	IRQ2 中断信号,复用 GPIO25
SPI_SCLK	5	6	SPI_MOSI
SPI_CS#	7	8	SPI_MISO
GND, 公共地	9	10	VCC,+5V 电源输出


2.8 数字 IO 接口

EM9380 支持 32 位 GPIO, 这 32 位 GPIO 分为两组,一组包括 GPIO16-GPIO31,属于常规 GPIO,由评估底板上的 CN8 引出。另一组包括 GPIO0-GPIO15,从 EM9380 配件协处理器引出,支持实现控制应用,在评估底板上对应的插座为 CN11。

所有 GPIO 的每一位的方向均可独立设置,且支持三态输出。所有 GPIO 信号在上电后,均为上拉输入状态,在引脚悬空状态时测试,其为高电平。CN8 和 CN11 是 20 芯双排 IDC 插座,各信号的定义如下:

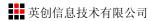
CN8 信号定义:

	1	1	
信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
GPIO16,上电为输入状态	1	2	GPIO17,上电为输入状态
GPIO18,上电为输入状态	3	4	GPIO19,上电为输入状态
GPIO20,上电为输入状态	5	6	GPIO21,上电为输入状态
GPIO22,上电为输入状态	7	8	GPIO23,上电为输入状态

GPIO24,上电为输入状态	9	10	GPIO25,上电为输入状态
GPIO26,上电为输入状态	11	12	GPIO27,上电为输入状态
GPIO28,上电为输入状态	13	14	GPIO29,上电为输入状态
GPIO30,上电为输入状态	15	16	GPIO31,上电为输入状态
+5V, 电源输出	17	18	+5V,电源输出
GND,公共地	19	20	GND,公共地

CN11 信号定义:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
GPIO0,上电为输入状态	1	2	GPIO1,上电为输入状态
GPIO2,上电为输入状态	3	4	GPIO3,上电为输入状态
GPIO4,上电为输入状态	5	6	GPIO5,上电为输入状态
GPIO6,上电为输入状态	7	8	GPIO7,上电为输入状态
GPIO8,上电为输入状态	9	10	GPIO9,上电为输入状态
GPIO10,上电为输入状态	11	12	GPIO11,上电为输入状态
GPIO12,上电为输入状态	13	14	GPIO13,上电为输入状态
GPIO14,上电为输入状态	15	16	GPIO15,上电为输入状态
+5V, 电源输出	17	18	+5V,电源输出
GND,公共地	19	20	GND,公共地

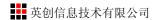

2.9 Micro SD 卡插座

通过硬件配置, EM9380 可以支持 SD 卡, 但需要占用 COM7、COM8、COM9 对应的信号管脚。EM9380 SD 卡版的配置为 1 路 SD 卡, 5 路高速串口。EM9380 评估底板背面的CN15 是 Micro SD 卡接口,最大支持 32G 的 Micro SD 卡。

如果用户使用的 EM9380 评估底板是支持 SD 卡的,那么底板上的 3 路 RS485 则由标准 底板的 COM7、COM8、COM9 变为 COM4、COM5、COM6。EM9380 主板引出的 COM4、COM5、COM6 同时驱动评估底板上的 CN1 三路 RS485 接口和 CN12、CN10、CN13 三路 TTL 电平串口,但每个串口的 485 接口和 TTL 电平接口不能同时使用。

支持 SD 卡的 EM9380 评估底板 CN1 的信号定义。

PIN#	信号名称	信号简要描述
1	A	COM4 口 RS485 差分信号+


2	В	COM4 口 RS485 差分信号-
3	A	COM5 口 RS485 差分信号+
4	В	COM5 口 RS485 差分信号-
5	A	COM6 口 RS485 差分信号+
6	В	COM7 口 RS485 差分信号-

2.10 电源输入插座

CN7 为开发评估底板以及 EM9380 模块的电源输入接口。

PIN#	信号名称	信号简要描述
1 VCC		+5V 电源输入
2		
3	GND	公共地

<u>www.emtronix.com</u> 14 028-86180660

3、EM9380 与评估底板的连接插座

评估底板的 EM9380_CN1 和 EM9380_CN2 是两个 36 芯 IDC 双排插座 (阴性),分别与 EM9380的 CN1 和 CN2 插针相连接。

EM9380_CN1 各管脚的信号定义如下表:

信号名称及简要描述		N 1	户 旦 	
		PIN	信号名称及简要描述	
LINK#,Eth0 连接/传送指示	1	2	SPEED#,Eth0 速度指示	
TPTX+,以太网差分输出	3	4	TPTX-,以太网差分输出	
TPRX+,以太网差分输入	5	6	TPRX-,以太网差分输入	
VDD_CMT1,网络变压器公共端	7	8	系统保留	
ttyS6_RXD (COM7)	9	10	ttyS6_TXD (COM7)	
ttyS7_RXD (COM8)	11	12	ttyS7_TXD (COM8)	
ttyS8_RXD (COM9)	13	14	ttyS8_TXD (COM9)	
USB1_HD+,USB1 Host 信号	15	16	USB1_HD-,USB1 Host 信号	
USB2_HD+,USB2 Host 信号	17	18	USB2_HD-,USB2 Host 信号	
COM2_RXD	19	20	COM2_TXD	
COM3_RXD,232 电平	21	22	COM3_TXD,232 电平	
COM4_RXD	23	24	COM4_TXD	
COM5_RXD	25	26	COM5_TXD (DBGSL#)	
GPIO0 / MCU_T0_IOA	27	28	GPIO1 / MCU_T0_IOB	
GPIO2 / MCU_T0_CLK	29	30	GPIO3 / MCU_T1_IOA	
GPIO4 / MCU_PWM3	31	32	GPIO5 / MCU_PWM4	
GPIO6 / MCU_PWM5	33	34	GPIO7 / MCU_PWM6	
GPIO8 / MCU_AD0	35	36	GPIO9 / MCU_AD1	

EM9380_CN2 各管脚的信号定义如下表:

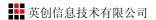
台口 4.4	CN2		尼贝 克勒及约西州决	
信号名称及简要描述	PIN	PIN	信号名称及简要描述	
+5V 电源输入	1	2	+5V 电源输入	
USB_OTG_VBUS	3	4	RSTIN#,外部复位输入	
电源地 (GND)	5	6	电源地(GND)	
USB_OTG_D+	7	8	USB_OTG_D-	
USB_OTG_UID	9	10	BATT3V,3.3V 电池输入	
DBG_COM_RX,232 电平	11	12	DBG_COM_TX,232 电平	
USB3_HD+, USB3 Host 信号	13	14	USB3_HD-,USB3 Host 信号	
GPIO10 / MCU_AD2	15	16	GPIO11 / MCU_AD3	
GPIO12 / MCU_AD4	17	18	GPIO13 / MCU_AD5	
GPIO14 / MCU_AD6	19	20	GPIO15 / MCU_AD7	
GPIO16 / COM2_CTS#	21	22	GPIO17 / COM2_RTS#	
GPIO18 / COM6_RXD	23	24	GPIO19 / COM6_TXD	
GPIO20 / PWM1	25	26	GPIO21 / PWM2	
GPIO22 / I2C_SDA	27	28	GPIO23 / I2C_SCL	
GPIO24 / IRQ1	29	30	GPIO25 / IRQ2	
GPIO26 / IRQ3	31	32	GPIO27 / IRQ4	
GPIO28 / SPI_MISO	33	34	GPIO29 / SPI_MOSI	
GPIO30 / SPI_SCLK	35	36	GPIO31 / SPI_CS0N	

4、评估底板内部插座及其它

4.1 跳线器

EM9380 评估底板上有 4 个跳线器, JP1 用于选择系统运行模式。当 JP1 短接时,系统开机以后进入调试模式, JP1 断开时,系统开机以后进入运行模式。

JP2、JP3、JP4 分别是 3 路 RS485 接口的终端匹配电阻选择跳线器,短接即加上 120 欧匹配电阻。


4.2 指示灯

EM9380 评估底板上用于指示作用的 LED 灯共有 5 个,介绍如下:

指示灯编号	指示灯名称	功能简要描述
D1	PWR	电源指示灯,系统连接 5V 电源时点亮
D2	RUN	运行指示灯,调试串口有信息输出时亮
D9	TXD7	COM7 口数据发送指示灯
D5	RXD7	COM7 口数据接收指示灯
D14	TXD8	COM8 口数据发送指示灯
D10	RXD8	COM8 口数据接收指示灯
D19	TXD9	COM9 口数据发送指示灯
D15	RXD9	COM9 口数据接收指示灯

5、其它说明

- 1. 底板上提供了6个Φ3.2的定位孔,可用之将底板固定在特定位置,如机箱上。
- 2. 开发光盘中提供有评估底板的电路原理图(PDF格式)和 PCB图(Protel 文件),用户可作为进一步开发的参考,进行增加或删减以满足自己产品的实际需要。我公司提供的图纸已经证实成功实现上述各功能,但不能保证用户根据此图纸作的进一步更改能够 100%成功,用户若有疑问,请与我们联系。

6、版本历史

手册版本	适用底板	简要描述	日期
V1.0	EM9380EVB V1.0	EM9380 开发评估底板手册	2013-07

<u>www.emtronix.com</u> 19 028-86180660