

EML 评估底板 数据手册 V1.0

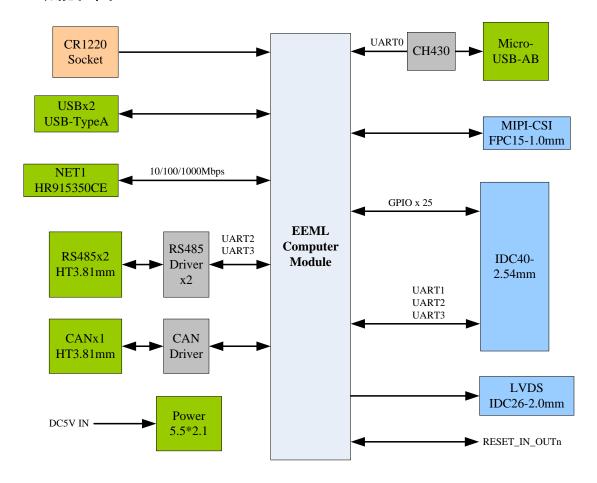
1. 概述

1.1 EML 规范简介

EML 工控主板的机械尺寸定义为 40mmx60mm, 2 个 2.0mm 的安装固定孔。其机械尺寸参数如下图所示:

EML 工控主板的机械尺寸定义(单位: mm)

1.2 EML 通用评估底板的主要接口


EML 评估底板提供如下资源接口:

- 1路 1000Mbps 网络接口,兼容 10Mbps/100Mbps 网络
- 2 x CAN 2.0, 使用光电隔离(速率可达 1Mbps)
- 2 x RS485,使用光电隔离
- 1 x UART 接口, LVCMOS 电平, 支持硬件流控
- 1 x USB2.0 主口,可连接 USB 设备
- 1 x USB-Slave 端口,用于系统终端

<u>www.emtronix.com</u> 2 028-86180660

- 24 个 GPIO, 独立可控
- RTC 后备电池座,支持 CR1225 电池
- LVDS 显示接口,支持 18bit/24bit,引出触摸屏扩展 I2C 总线信号
- 完善的电磁兼容保护

1.3 功能框图

IDC 插针件 PCB 边沿连接件 驱动电路 板上功能模块

<u>www.emtronix.com</u> 3 028-86180660

1.4 机械尺寸

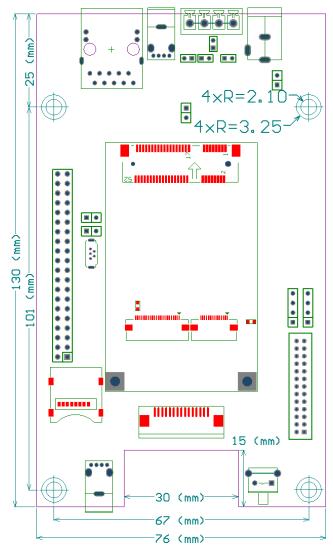
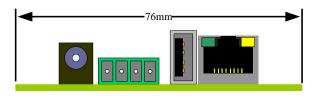
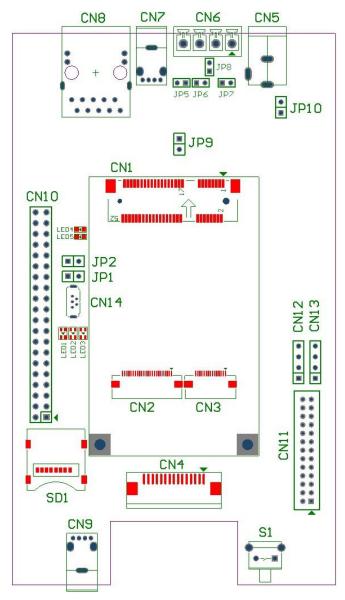



图 1: EML EVB 布局图及外形尺寸(单位: mm)

EML-EVB 端面A

图 2: EML EVB 端口布局图

<u>www.emtronix.com</u> 4 028-86180660


1.5 WinCE 系统与 Linux 系统中异步串口设备对应

硬件资源名称	WinCE 设备名称	Linux 设备名称
UART1	"COM2"	"ttyS1"
UART2	"COM3"	"ttyS2"
UART3	"COM4"	"ttyS3"
UART4	"COM5"	"ttyS4"
UART5	"COM6"	"ttyS5"
UART6	"COM7"	"ttyS6"

注: 该手册中,对异步串口的描述,均使用硬件资源名称。

1.6 连接器插座

EML EVB 评估底板上共设置了 16 个连接器,和 8 颗跳线器,在 EML 上的分布如下 图所示:

各连接器的功能描述如下:

插座编号	接插座类型	主要功能简述
CN1	mini PCle 插座	连接 EML 主板
CN2	FPC24-0.5mm 插座	EML 主板 LVDS 信号转接到 EML-EVB
CN3	FPC15-0.5mm 插座	EML 主板 GPIO 信号转接到 EML-EVB
CN4	FPC15-1.0mm 插座	树莓派 MIPI-CSI 摄相头连接座
CN5	5.5mm/2.0mm 插座	电源输入接口 5.5*2.1(DC5V ±5%)
CN6	HT3.81mmx4 端子	RS485/CAN 总线连接插座
CN7	USB-Type A 型插座	1路 USB 主控接口,连接 USB1
CN8	1000Mbpa B 145 括应	ETH1 网络接口,1000Mbps 网络接口,兼容
CINO	1000Mbps RJ45 插座	10Mbps/100Mbps
CN9	USB-Type A 型插座	1路 USB 主控接口,连接 USB2
CN10	IDC40-2.54mm 插针 EML 主板串口及 GPIO 资源引出端子	
CN11	IDC26-2.0mm 插针	LVDS 输出信号及触摸屏控制信号接口
CN12	SIP4-2.54mm 插针	触摸屏信号接口
CN13	SIP4-2.54mm 插针	LCD 背光 DC5V 电源及背光开关控制接口
CN14	mini USB-TypeAB 插座	EML 主板调试串口,转接为 USB 端口
S1	轻触按钮	系统复位
SD1	翻盖式 TF 卡插座	仅限系统管理使用,用户不可以使用 SD 卡功能
JP1	2.54mm 跳线器	系统运行状态(断开为运行状态,短接为调试状态)
JP5/JP6	2.0mm 跳线器	UART2-RS485/CAN2 总线 120R 匹配跳线
JP7/JP8	2.0mm 跳线器	UART3-RS485/CAN1 总线 120R 匹配跳线
JP9	2.54mm 跳线器	UART2-RS485/CAN2 总线功能选择
JP10	2.54mm 跳线器	UART3-RS485/CAN1 总线功能选择

注:

由于 EML EVB 通用评估底板引出的硬件资源较为固定有限,对于一些 EML 工控主 板特有的硬件资源接口并没有体现。因此需要参考相应 EML 工控主板的数据手册,以获取 详细的硬件资源及分布信息。

2. 接口描述

2.1 主板模块连接(CN1)

EML 主板通过 CN1 与 EML 评估底板连接,并需要使用 2.5mm*3 的螺母进行固定。

连接器编号: CN1				
板卡元件面	外侧	内侧	板卡焊接面	
信号名称	PIN#	PIN#	信号名称	
USB1_DN	1	2	VCC_5V0	
USB1_DP	3	4	VCC_5V0	
USB2_DN	5	6	VCC_5V0	
USB2_DP	7	8	VCC_5V0	
GND	9	10	GND	
RESET_IO_B	11	12	BAT_3V0	
UARTO_RXD	13	14	GPIO0 / I2C_SDA	
UARTO_TXD / DBGSL_B	15	16	GPIO1 / I2C_SCL	
Mechanical Key				
UART1_RXD	17	18	GPIO2 (SD_CMD)	
UART1_TXD / SD_EN_B	19	20	GPIO3 (SD_CLK)	
UART2_RXD/CAN2_RXD	21	22	GPIO4/ SPI_MISO (SD_D0)	
UART2_TXD/CAN2_TXD	23	24	GPIO5/ SPI_MOSI (SD_D1)	
UART3_RXD/CAN1_RXD	25	26	GPIO6/ SPI_SCLK (SD_D2)	
UART3_TXD/CAN1_TXD	27	28	GPIO7/ SPI_CS0N (SD_D3)	
ENET_LINK_B	29	30	GPIO8 / PWM1	
ENET_ACT_B	31	32	GPIO9 / MIPI_CSI_RST_B	
GND	33	34	GPIO10 / MIPI_CSI_MCLK	
ENET_TRX0N	35	36	GPIO11/ MIPI_CSI_I2C_SDA	
ENET_TRX0P	37	38	GPIO12/ MIPI_CSI_I2C_SCL	
ENET_TRX1N	39	40	GND	

ENET_TRX1P	41	42	MIPI_CSI_D0_N
ENET_TRX2N	43	44	MIPI_CSI_D0_P
ENET_TRX2P	45	46	MIPI_CSI_D1_N
ENET_TRX3N	47	48	MIPI_CSI_D1_P
ENET_TRX3P	49	50	MIPI_CSI_CLKN
GND	51	52	MIPI_CSI_CLKP

详细的管脚功能定义及功能复用,对应到不同的主板,可能有所差异,请参考相应的 EML 主板数据手册。

2.2 MIPI-CSI 摄相头接口

该接口可以直接支持树梅派 MIPI-CSI x1 摄相头,定义定义如下:

连接器编号: CN4			
PIN#	信号名称	信号描述	
1	GND		
2	MIPI_CSI_D0N		
3	MIPI_CSI_D0P		
4	GND		
5	MIPI_CSI_D1N		
6	MIPI_CSI_D1P		
7	GND		
8	MIPI_CSI_CLKN		
9	MIPI_CSI_CLKP		
10	GND		
11	MIPI_CSI_RST_B		
12	MIPI_CSI_MCLK		
13	MIPI_CSI_I2C_SCL		
14	MIPI_CSI_I2C_SDA		
15	DC3.3V		

2.3 电源接口(CN3,CN4)

CN5 作为开发评估底板以及 EML 模块供电的电源输入接口。为保证系统稳定运行,请至少使用 3A/DC 5.0V、+/- 5%的电源为评估系统供电。

CN5 为 5.5mm/2.1mm 标准适配器插座,定义如下:

注意: EML 评估底板电源输入接口没有过压保护功能,接入超过接口限制的电压将导致硬件损坏。

2.4 以太网接口(CN8)

EML 评估底板上的提供 1 路以太网接口 CN8,为 ETH1 网络接口,是 1000Mbps 以太网接口。CN8 采用一体化 RJ45 网络插座 HR915350CE,当连接 1000Mbps 网络控制器时,引脚信号定义如下:

PIN#	信号名称	信号简要描述	
1	GND	网络变压器偏置电源。连接网络控制器	
2	ETH1_CMT	1 输出的偏置电压输出端	
3	ETH1_TRX3P	 1000Mbps 网络差分信号 4	
4	ETH1_TRX3N	TOOONIDPS 网络左方后 5 4	
5	ETH1_TRX2P	 1000Mbps 网络差分信号 3	
6	ETH1_TRX2N	TOOOMBPS 网络左方信号 3	
7	ETH1_TRX1P	1000Mbps 网络差分信号 2	
8	ETH1_TRX1N	TUUUIIIIIPS 网络左刀信与 Z	
9	ETH1_TRX0P	 1000Mbps 网络差分信号 1	
10	ETH1_TRX0N	TOOONIDPS 网络左刀百寸 T	

CN8 网口 RJ45 插座上自带以太网指示灯:

- 左边-绿灯: ETH1 LED LINK 指示灯,网络连接有效时,常亮状态
- 右边-黄灯: ETH1 LED ACT 指示灯,有数据通讯时闪烁。

2.5 CAN/RS485 总线接口(CN10)

CN6 为 EML 评估底板上 2 路 CAN/RS485 总线,使用 4 芯 HT3.81mm 接线端子,分

<u>www.emtronix.com</u> 9 028-86180660

别连接主板上的 UART2/CAN1 和 UART3/CAN2。EML EVB 评估底板上的总线驱动电路对信号使用了隔离。CN6 端口信号定义如下:

PIN#	信号名称	信号简要描述
1	UART2_RS485_A/CAN1_H	UART2 口 RS485 总线或 CAN1
2	UART2_RS485_B/CAN1_L	 总线接口
3	UART3_RS485_A/CAN2_H	UART3 口 RS485 总线或 CAN2
4	UART3_RS485_B/CAN2_L	 总线接口

由于 UART 与 CAN 总线复用信号源和总线端口,因此需要使用跳线器 JP9、JP10 进行功能选择,确定使用 RS485 总线还是 CAN 总线。

跳线	状态	说明	
JP9	断开	CN6(P1、P2)作为 UART2-RS485 功能接口	
JP9	短接	CN6 (P1、P2) 作为 CAN1 功能接口	
JP10	断开	CN6(P3、P4)作为 UART3-RS485 功能接口	
JP10	短接	CN6 (P3、P4) 作为 CAN2 功能接口	

(JP5、JP6)、(JP7、JP8)是 RS485/CAN 总线终端配置电阻,这两个跳线器同时短上后,将为总线并上 120Ω 电阻($60\Omega \times 2$)。两个跳线器需要同时短接或同时断开。

跳线	状态	说明	
JP5	短接	UART2-RS485/CAN1 总线端口增加匹配电阻 120 欧	
JP6	型 按		
JP7	短接	UART3-RS485/CAN2 总线端口增加匹配电阻 120 l	
JP8	型 按	UART3-R3403/UAN2	

为了简化应用程序设计,RS485 驱动芯片采用了自动收发控制器 MAX13487E,应用程序不需要再控制 RS485 驱动芯片的收/发控制问题。

2.6 USB-HOST 接口(CN7,CN9)

CN7、CN9 是 EML EVB 评估底板 USB2.0 接口。

EML EVB 评估底板提供 2 路 USB-HOST 接口,通过 2 个 USB-TypeA 插座 CN7、CN9接口引出。

CN7、CN9 是标准 USB-A 型插座, USB 的引脚定义如下表:

PIN#	信号名称	信号简要描述	
1	+5V	USB 供电输出,最大电流 500mA	
2	USB_HDN	· USB 的差分信号	
3	USB_HDP		
4	GND	电源地,即公共地。	

2.7 通用数字 IO(CN10)

CN10 是 EML EVB 评估底板的 GPIO 信号端口。

EML系列工控主板最多可以支持24位可独立操作的GPIO。在EML评估底板上,GPIO通过2x20、2.54mm的插针CN10引出。CN10同时也将EML主板的3路UART串口信号引出来。

CN10 信号定义如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
GPIO0	GPIO0 1		GPIO1
GPIO2	3	4	GPIO3
GPIO4	5	6	GPIO5
GPIO6	7	8	GPIO7
GPIO8	9	10	GPIO9
GPIO10	11	12	GPIO11
GPIO12	13	14	NC
GPIO16	15	16	GPIO17
GPIO18	17	18	GPIO19
GPIO20	19	20	GPIO21
GPIO22	21	22	GPIO23
GPIO24	23	24	GPIO25
GPIO26	25	26	GPIO27
UART1_RXD	27	28	UART1_TXD
UART2_RXD /			UART2_TXD /
CAN2_RXD	29	30	CAN2_RXD
UART3_RXD /			UART3_TXD /
CAN1_RXD	31	32	CAN1_RXD
IO_RSTOUTn	33	34	NC
NC	35	36	NC
VCC,DC5V 电源输出	37	38	VCC,DC5V 电源输出
GND,公共地	39	40	GND,公共地

GPIO16~GPIO27 由 CN3 转接到 EML EVB 底板上,再连接到 CN10 插针。CN3 为 FPC15-0.5mm 带线座,其信号定义如下表:

	连接器编号: CN3				
PIN#	信号名称	信号描述			
1	GND				
2	GPIO16 / UART4_RXD				
3	GPIO17 / UART4_TXD				
4	GPIO18 / UART5_RXD				
5	GPIO19 / UART5_TXD				
6	GPIO20 / UART6_RXD				
7	GPIO21 / UART6_TXD				
8	GPIO22 / SPI2_MISO				
9	GPIO23 / SPI2_MOSI				
10	GPIO24 / SPI2_SCLK				
11	GPIO25 / SPI2_CS0N				
12	GPIO26 / SPI2_CS1N				
13	GPIO27 / PWM2				
14		NC,防止插偏造成损坏。			
15	VCC_5V0	为数字接口提供 3V3 电源。			

注意: EML 工控主板上的部分 GPIO 有其它复用功能,当使用 GPIO 的复用功能时,对应的 GPIO 不能再使用。更详细的使用说明,请参考对应的 EML 工控主板。GPIO 插针上的 DC5V 电源仅为输出功能,最大输出电流为 DC50V-1A。

2.8 LVDS 格式的显示接口(CN11)

CN11 是 EML EVB 评估底板上 LVDS 显示接口,支持 18bit 或 24bit 显示接口,可以直接连接 LVDS 显示器(需要 EML 工控主板配置为 LVDS 接口)。连接 18-bit 的 LCD 时,使用 LVDS_OUT0、LVDS_OUT1、LVDS_OUT2(MSB)和 LVDS_CLK。当连接 24-bit LCD时,需加上 LVDS_OUT3(LSB)信号。LVDS 信号编码格式,请参考相应的 EML 工控主板数据手册。

CN11 使用 2.0mm、26 芯双排针,信号定义如下:

信号名称及简要描述	PIN#	PIN#	信号名称及简要描述
DC3.3V 电源输出	1	2	DC3.3V 电源输出
U/D,LCD 垂直扫描方向控制	3	4	R/L,LCD 左右扫描方向控制

<u>www.emtronix.com</u> 13 028-86180660

EML EVB 的显示信号,由 CN2 转接出来。CN2 为 FPC24-0.5mm 带线座,其信号定义如下表所示:

连接器	连接器编号: CN2		
PIN#	信号名称	信号描述	
1	LVDS_DATA0N		
2	LVDS_DATA0P		
3	GND		
4	LVDS_DATA1N		
5	LVDS_DATA1P		
6	GND		
7	LVDS_CLKN		
8	LVDS_CLKP		
9	GND		
10	LVDS_DATA2N		
11	LVDS_DATA2P		
12	GND		
13	LVDS_DATA3N		
14	LVDS_DATA3P		
15	GND		

16	TSC_RST_B	触摸屏控制器复位,低电平有效
17	TSC_INT_B	触摸屏控制器中断请求,低电平有效
18	TSC_I2C_SCL	I2C 接口,触摸屏控制器和 MIPI_DSI 共用
19	TSC_I2C_SDA	
20	BL_EN_B	背光使能,低电平有效
21		NC,防止插偏造成损坏。
22	VCC_5V	
23	VCC_5V	LCD_VDD_3V3 需由此转换得到。
24	VCC_5V	

2.9 显示器背光控制及触摸屏(CN12,CN13)

为了适应更多的 LCD 连接与控制,在 EML 评估底板上设置了单独的 LCD 背光控制信号接口与触摸屏信号接口。

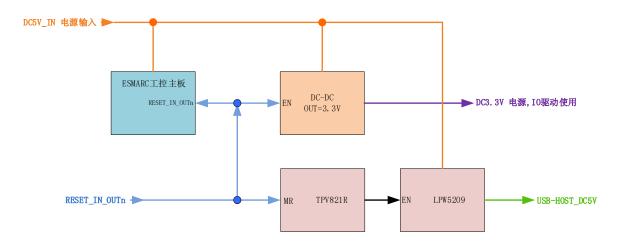
CN12与CN13是LCD接口的辅助接口,CN12是4线制电阻触摸屏信号接口,CN13是LCD背光电源及开关控制信号接口,利用这两个接口,可以更加方便地连接LCD屏。它们的信号定义如下:

CN12: 4线电阻触摸屏接口

引脚	信号	描述
1	TSC_RST_B	
2	TSC_I2C_SDA	触摸屏控制接口
3	TSC_INT_B	
4	TSC_I2C_SCL	

CN13: 背光电源及开关控制信号接口

引脚	信号	描述
1	+5.0V	DC5V 输出,可用于 LCD 背光电源
2	GND	公共地
3	NC	留空


4	LCD_BH	TTL 电平 LCD 背光控制信号,高有效,	
		可输出 PWM 信号控制背光亮度	

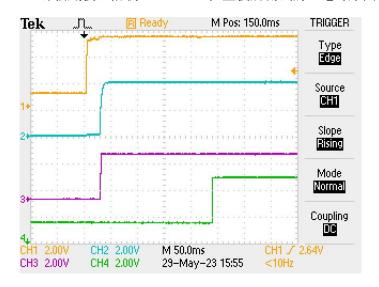
2.10 Micro SD 卡座(SD1)

SD1 插座是 EML 评估底板的一个翻盖式 TF 卡座,主要是用于厂家系统管理使用,用户不可用。

3. EML EVB 上电时序

EML EVB 评估底板具有防漏电设计,以满足复杂 CPU 应用需求。电源控制逻辑框图如下:

部份功能描述:


- DC-DC: 输出 DC3. 3V 电源,为 EML EVB 底板上的器件供电,EN 为高电平工作
- TPV821: 电源管理/复位功能器件,电源正常与 MR 为高电平,延时约 250ms 后输出高电平
- LPW5209: 电源开关,最大可输出 DC5V-2A 电流, EN 为高电平时打开, 主要为 EML EVB 评估底板的 USB-TypeA 接口供电 DC5V

原理说明:

EML 工控主板的 RESET_IN_OUTn 信号引脚是一个具有输入/输出特性的双向引脚:上电时,EML 工控主板上的 PMU(电源管理器)电源没有准备好时,RESET_IN_OUTn 输出为低电平;待 PMU 电源都准备好以后,RESET_IN_OUTn 变换为输入状态,并由内部电阻上拉为高电平,这时将 RESET_IN_OUTn 信号对地短接一下,可实现对 EML 工控主板进行复位。

- 1. 根据 RESET_IN_OUTn 引脚功能特性,在上电时,RESET_IN_OUTn 为低电平,DC3.3V 电源不工作,EML EVB 底板上的外围器件没有电源;同时,TPV821R 的 MR 端为低电平,使 LPW5209 开关禁止,对板外不输出电源。因此,这期间,除 EML 工控主板有 DC5 的供电外,所有引脚都不会有电源信号漏电反馈到 EML 工控主板。
- 2. 当 EML 工控主板上的 PMU 准备好以后,CPU 开始正常工作,RESET_IN_OUTn 变成高电平,DC3. 3V 电源开始输出,以供评估底板上的外围器件。这时候,由于 EML 工控主板已准备好端口 I/O 的 3. 3V 电源,就不会有 I/O 漏电导致不启动的现象。同时,TPV821R 延时约 250ms 后,输出高电平,LPW5209 开关使能,对外围电路供电。

橙色: DC5V_IN 蓝色: RESET_IN_OUTn 紫色: DC3.3V 绿色: USB-HOST_DC5V

4. 其它功能

4.1 硬件复位按钮

EML 评估底板上的 S1 是系统复位按键,按下 S1 会将主板的复位输入信号拉低,强制

系统复位。

4.2 调试/运行模式跳线

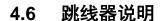
EML 系列工控主板具有"运行"和"调试"两种工作模式,两种模式的选择是通过 EML 评估底板上引出专用配置引脚 DBGSL#(EML_CN2.E15)。在 EML 评估底板上放置了运行模式选择跳线器 JP1:

- 短接 JP1,设置 DBGSL#为低电平,系统启动进入调试模式;
- 断开 JP1,设置 DBGSL#为高电平,系统启动后进入运行模式。

系统调试与运行模式的定义与作用请参考对应的 EML 系列工控主板数据手册。

4.3 DB_SPEC 系统特殊功能使能跳线

DB_SPEC 系统特殊功能使能跳线,对于 EML 评估底板,主要作用是厂家进行系统维护使能跳线。


4.4 RTC 后备电池

EML 评估底板上放置了一颗 CR1025 电池座,支持使用 CR1025 (额定电压: 3.0V),作为 EML 工控主板的 RTC 单元的后备电池。

4.5 LED 指示灯

EML 评估底板上设置了 5 颗 LED 灯, 其中 2 颗为单色 LED 灯, 3 颗为双色 LED 灯, 主要作用如下:

指示灯编号	颜色	指示灯信号	功能简要描述
LED1	红绿双色	UART1	UART1 数据收发指示
LED2	红绿双色	UART2/CAN2	UART2/CAN2 数据收发指示
LED3	红绿双色	UART3/CAN1	UART3/CAN1 数据收发指示
LED4	红色	PWR	电源指示灯(当系统由 5V 供电时点亮)
LEDE	蓝色	DUN	运行指示灯(系统调试串口有信息输出
LED5	蓝色 RUN	时闪烁)	

接插座编号	接插座类型	主要功能简述	
JP1	2芯 SIP	系统工作模式选择:调试/运行	
JP2	2芯 SIP	ISA 总线挂接的设备主/从模式配置	
JP3、JP4	2芯 SIP	CAN1 接号接通跳线	
JP5、JP6	2芯 SIP	CAN 接口 120 欧终端匹配电阻选择	
JP7、JP8	2芯 SIP	分别为 COM4、COM5 的 RS485 总线 120 欧终端匹配	
JP7、JP8 Z心SIP		电阻选择	
JP13	2芯 SIP	DB_SPEC,特殊功能使能选择	
JP14	2芯 SIP	SD_DETn 卡检测跳线,系统使能 SD 卡接口后,短接跳	
JF 14		线,表示 SD 卡接入	

4.7 ESD 兼容性

网络 RJ45 金属外壳、USB 外壳、HDMI 外壳、DB9 外壳与电源座附近的安装孔相连,构成安全接地点,可以通过安装孔与机壳或其它安全接地点连接,提高系统的电磁兼容特性。同时,在 EML EVB 底板上,使用 102M/1KV 电容,将安全接地点与系统地平面耦合起来。

如果系统在使用环境中有可靠的接地点(安全地/大地),可以将板子的安全接地点通过 机壳,与接地点连接。否则一定需要将板子上的安全接地点悬空起来,不要与系统外部的任 何金属/导电物体连接。

4.8 底板安装孔

在 EML EVB 评估底板的四个角上,有 4 个 Φ4.2 位孔,可用之将底板固定在特定位置或安装支撑柱。

安装孔的详细尺寸数据,请参考"1.4 机械尺寸"图 1 所示。

5. 订货信息

Module Type	Description
EML EVB V1.0 评估底板	

<u>www.emtronix.com</u> 20 028-86180660

6. 技术支持

用户还可以访问英创网站或直接与英创公司联系以获得 EML 系列工控主板的其他相关资料。

英创信息技术有限公司联系方式如下:

地址:成都市高新区高朋大道 5号博士创业园 B座 407# 邮编:610041

联系电话: 028-86180660 传真: 028-85141028

网址: <u>www.emtronix.com</u> 电子邮件: support@emtronix.com

7. 版本历史

手册版本	适用底板	简要描述	日期
V1.0	EML EVB V2.0	适用于 EML 系列主板的评估底板	2023-12-19

注意: 英创会不断的完善本手册的相关技术内容,请客户适时从公司网站下载最新版本的数据手册, 恕不另行通知。如有意见或建议,欢迎随时与我们联系,以便我们及时改进、完善。

<u>www.emtronix.com</u> 22 028-86180660